Key Distribution using Quantum Cryptography

By

Ash Ghogale and Pulasti Choudhary

Classical Cryptography

- Some basic definitions
 - Cryptography science of encrypting
 - Cryptanalysis science of decrypting
 - Cryptology discipline comprising of both
 - Plaintext data to be encrypted
 - Ciphertext encrypted message
 - Key user selected data used to convert between plaintext and ciphertext
- Traditional techniques
 - Transposition
 - Substitution

Secret Key Encryption

- Symmetric: single key used to encrypt and decrypt
- Common techniques
 - Block ciphers
 - Stream ciphers
- DES, triple-DES
- Key distribution problem
- Central key distribution server

Public Key Cryptosystem – Solution to Key Distribution Problem

- Asymmetric: a mailbox with two locks!
- Private key is always linked mathematically to the public key
- Clever mathematical solution one way functions
- "Difficult" problems
- RSA Based on Prime Number Factoring

PKC - Problems and Threats

- Technology advancements
 - "Confidence in the slowness of technological progress is all that the security of the current system rests upon"
- Mathematical advancements
 - Success depends on assumed-but-not-proven intrinsic difficulty of certain mathematical operations such as factoring large numbers (RSA)
 - Factoring Breakthroughs

Quantum Information And It's Properties

- Qubit
 - Basic unit of Quantum information.
 - Could carry more than one states until measured!
- No-Cloning Theorem An unknown Quantum state can not be copied
- Attempt to read information introduces disturbance
- Irreversibility of measurement

Quantum Key Distribution - An Alternative to PKC

- BB84 Protocol
 - Tolerable error rate sacrifice some communication to test for eavesdropping
 - Key Storage Problem EPR Scheme based on the entanglement
 - Efficiency
- Other schemes
 - Multi-user network protocol
 - No public discussion protocol

BB84

Bennett-Brassard 1984

Limitations of Quantum Key Distribution

- Jamming the channel
- Man in the middle
- Single photon transmission
- Noise not distinguishable from eavesdropping
- Transmission Mechanism and Frequency

Quantum Cryptanalysis

- Quantum Computing can efficiently solve factoring and elliptic curves problem
- Shor's (1994) "hidden linear form" algorithm to cryptanalysis
- Grover's algorithm for exhaustive key search against DES
- Conventional Crypto systems will be unsafe!

Feasibility of Quantum Cryptography

- Increase in Security
 - => Increase in Cost
 - => Decrease in Practical Interest

- Progress in technology more predictable than progress in mathematics
- "Retrospective" Attack is not possible

Example QKD Network

Reference: NIST

QISET Meeting April 29, 2004

Latest Developments

 First QC Financial transaction performed by Bank of Austria on behalf of City of Vienna performed on April 21,2004

NIST Demo May 2004 – Sets Speed Record

Application for Industry and Users

- Implementation Drivers
 - Mathematical breakdown of PKC
 - Technological advancement in quantum computing
 - Need to keep some secrets for ever
- Someone could be storing all the transactions to be deciphered at later date
- Target Implementations
 - Govt.Departments, banks and financial institutes looking to archive information over ultra secure links are expected to be the first ones to use this technology
 - It is also expected that this technology will be used to reinforce the security of E-Voting applications through tamper and eavesdropping detection via Quantum channel connecting Central Govt.servers with local county servers¹

Sources:

¹ Product Vendor (WISeKey Press Release)

Defining and designing Security Policies and Procedures

- Standards have to keep pace with technological advances.
- FIPS impacts
 - NIST News release on FIPS 46-3
 - FIPS 171
- Security Policy Where will it be impacted
- Elimination of Key maintenance overhead
- Focus in the policies and procedures will shift from Secret Key Management Procedures more towards actual Data transmissions and management
- With properly implemented QC, attacking the key becomes virtually impossible despite increased computing power

Implications on Executive Decision Making

Rewards

- Business Processes will become much more efficient, faster, transparent
- Tamper Proof guarantee
- Periodic Security Scans and Intrusion Detection runs could be eliminated
- Variety of funding opportunities available for partnering in QC research

Risks

- Cost
- Emerging Technology

Preparing for the Future

- Design future Architectures that are able to support an Integrated Mix of Foundation and Emerging technologies
- Look for partnership opportunities in QC
 - Test Beds for Quantum Cryptography Policy and Procedures (NIST, US Govt, Universities)
 - Policies and Procedures are business specific hence Govt. and Universities are actively looking forward to Agency and Pvt. Sector participation in these projects
- Keeping abreast of latest technological advancements helps us to start thinking about their application and integration in current Business Processes

References

- qubit.nist.gov
- www.itl.nist.gov
- <u>www.governmenterprise.com/showArticle.jhtml?articleID=21400688</u>
- <u>www.qubit.org</u>
- www.gap-optique.unige.ch/Publications/Pdf/QC.pdf
- <u>www.csa.com/hottopics/crypt/overview.html</u>
- www.ecst.csuchico.edu/~atman/Crypto/quantum/quantum-index.html
- www.rsa.com
- <u>www.magiqtech.com</u>
- www.wisekey.com